Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Plant Physiol Biochem ; 207: 108396, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38310727

RESUMO

Drought stress poses a substantial threat to global plant productivity amid increasing population and rising agricultural demand. To overcome this problem, the utilization of organic plant growth ingredients aligns with the emphasis on eco-friendly farming practices. Therefore, the present study aimed to assess the influence of 30 botanical extracts on seed germination, seedling vigor, and subsequent maize plant growth under normal and water deficit conditions. Specifically, eight extracts showed significant enhancement in agronomical parameters (ranging from ∼2 % to ∼ 183 %) and photosynthetic pigments (ranging from ∼21 % to âˆ¼ 195 %) of seedlings under drought conditions. Extended tests on maize in a greenhouse setting confirmed that the application of six extracts viz Moringa oleifera leaf (MLE), bark (MBE), Terminalia arjuna leaf (ALE), bark (ABE), Aegel marmelos leaf (BLE), and Phyllanthus niruri leaf (AmLE) improved plant growth and drought tolerance, as evident in improved physio-biochemical parameters. GC-MS analysis of the selected extracts unveiled a total of 51 bioactive compounds, including sugars, sugar alcohols, organic acids, and amino acids, and might be playing pivotal roles in plant acclimatization to drought stress. In conclusion, MLE, MBE, BLE, and ABE extracts exhibit significant potential for enhancing seedling establishment and growth in maize under both normal and water deficit conditions.


Assuntos
Antioxidantes , Zea mays , Antioxidantes/metabolismo , Zea mays/metabolismo , Secas , Plântula/metabolismo , Extratos Vegetais/farmacologia , Extratos Vegetais/metabolismo , Água/metabolismo , Estresse Fisiológico
2.
Plant Cell Rep ; 43(2): 49, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38302760

RESUMO

KEY MESSAGE: Paenibacillus lentimorbus reprograms auxin signaling and metabolic pathways for modulating root system architecture to mitigate nutrient deficiency in maize crops. The arable land across the world is having deficiency and disproportionate nutrients, limiting crop productivity. In this study, the potential of plant growth-promoting rhizobacteria (PGPR) viz., Pseudomonas putida, Paenibacillus lentimorbus, and their consortium was explored for growth promotion in maize (Zea mays) under nutrient-deficient conditions. PGPR inoculation improved the overall health of plants under nutrient-deficient conditions. The PGPR inoculation significantly improved the root system architecture and also induced changes in root cortical aerenchyma. Based on plant growth and physiological parameters inoculation with P. lentimorbus performed better as compared to P. putida, consortium, and uninoculated control. Furthermore, expression of auxin signaling (rum1, rul1, lrp1, rtcs, rtcl) and root hair development (rth)-related genes modulated the root development process to improve nutrient acquisition and tolerance to nutrient-deficient conditions in P. lentimorbus inoculated maize plants. Further, GC-MS analysis indicated the involvement of metabolites including carbohydrates and organic acids due to the interaction between maize roots and P. lentimorbus under nutrient-deficient conditions. These findings affirm that P. lentimorbus enhance overall plant growth by modulating the root system of maize to provide better tolerance to nutrient-deficient condition.


Assuntos
Bacillus , Paenibacillus , Zea mays , Zea mays/genética , Redes e Vias Metabólicas , Nutrientes , Ácidos Indolacéticos/metabolismo , Raízes de Plantas/metabolismo
3.
Plant Physiol Biochem ; 206: 108273, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38103339

RESUMO

Root system architecture, encompassing lateral roots and root hairs, plays a vital in overall plant growth and stress tolerance. Reactive oxygen species (ROS) and plant hormones intricately regulate root growth and development, serving as signaling molecules that govern processes such as cell proliferation and differentiation. Manipulating the interplay between ROS and hormones has the potential to enhance nutrient absorption, stress tolerance, and agricultural productivity. In this review, we delve into how studying these processes provides insights into how plants respond to environmental changes and optimize growth patterns to better control cellular processes and stress responses in crops. We discuss various factors and complex signaling networks that may exist among ROS and phytohormones during root development. Additionally, the review highlights possible role of reactive nitrogen species (RNS) in ROS-phytohormone interactions and in shaping root system architecture according to environmental cues.


Assuntos
Sinais (Psicologia) , Reguladores de Crescimento de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Espécies Reativas de Oxigênio , Produtos Agrícolas , Raízes de Plantas
4.
Int J Biol Macromol ; 253(Pt 3): 126832, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37709234

RESUMO

The JASMONATE-ZIM DOMAIN (JAZ) repressors are crucial proteins in jasmonic acid signaling pathway that are critical for plant growth. Therefore, the present study aimed to identify and characterize OsJAZs in the rice genome, revealing their structural attributes, regulatory elements, miRNA interactions, and subcellular localization. 23 JAZ transcripts across the 6 chromosomes of rice genome were identified having conserved domains and different physiochemical characteristics. Phylogenetically classified into five clades, they showed highest syntenic relationship with P. virgatum. The non-synonymous/synonymous values ranged from 0.44 to 1.21 suggesting purifying/stabilizing selection in OsJAZs. The study examined the 1.5 kb promoter region for cis-regulatory elements, and also identified 92 miRNAs targets. Furthermore, homology modeling provided insights into the 3D-structures of JAZ proteins while in-silico gene expression analysis revealed their functional diversity in various tissues and developmental stages. Additionally, qRT-PCR analysis highlighted their involvement in stress adaptation to sub-optimum nutrient conditions induced by plant-beneficial rhizobacteria Bacillus amyloliquefaciens (SN13) in two rice varieties. Distinct OsJAZ expression patterns in the two varieties correlated with altered root architecture, xylem structure, and lignification. These findings affirmed that specific up-or down-regulation of OsJAZs might play critical role in SN13 induced changes in the two varieties that enabled them to survive under stress.


Assuntos
Oryza , Oryza/metabolismo , Fatores de Transcrição/genética , Sequências Reguladoras de Ácido Nucleico , Perfilação da Expressão Gênica , Nutrientes , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/química , Filogenia
5.
Curr Microbiol ; 80(2): 77, 2023 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-36652029

RESUMO

Rhizobacteria that are helpful to plants can lessen the impacts of salt stress, and they may hold promise for the development of sustainable agriculture in the future. The present study was intended to explicate consortia of salt-tolerant plant-beneficial rhizobacteria for the amelioration of salinity stress in Arabidopsis plants. Inoculation with both the consortia positively influenced the growth of plants as indicated by total chlorophyll content, MDA content, and antioxidant enzyme activities under stressful conditions. Both the multi-trait consortia altered the expression profiles of stress-related genes including CSD1, CAT1, Wrky, Ein, Etr, and ACO. Furthermore, the metabolomic analysis indicated that inoculated plants modulated the metabolic profiles to stimulate physiological and biochemical responses in Arabidopsis plants to mitigate salt stress. Our study affirms that the consortia of salt-tolerant bacterial strains modulate the transcriptional as well as metabolic machinery of plants to protect them from salinity stress. Nevertheless, the findings of this study revealed that consortia are composed of salt-tolerant bacterial strains viz. Bacillus safensis NBRI 12M, B. subtilis NBRI 28B, and B. subtilis NBRI 33N demonstrated significant improvement in Arabidopsis plants under saline stress conditions.


Assuntos
Arabidopsis , Bacillus , Tolerância ao Sal/genética , Arabidopsis/genética , Bacillus/metabolismo , Estresse Salino , Bactérias/metabolismo , Antioxidantes/metabolismo , Estresse Fisiológico
6.
Int J Biol Macromol ; 143: 937-951, 2020 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-31739073

RESUMO

To avoid disproportionate usage of chemicals in agriculture, an alternative eco-friendly strategy is required to improve soil fertility, and enhance crop productivity. Therefore, the present study demonstrates the role of plant beneficial rhizobacteria viz., Paenibacillus lentimorbus B-30488 (B-30488), Bacillus amyloliquefaciens SN13 (SN13), and their consortium in rice (Oryza sativa L. var. IR-36) facing nutrient deprivation. Parameters such as proline, total soluble sugar, relative water content, electrolytic leakage and malondialdehyde content were modulated in control rice seedlings as compared to treated under nutrient starved conditions. Bacterial inoculation not only significantly improved the agronomic parameters but also concentrations, uptake and partitioning of macro-micro nutrients. To disclose PGPR induced mechanisms to low nutrient stress tolerance, GC-MS analysis was performed. Overall 43 differential metabolites were characterized. Proline, glutamine, linolenic acid, malic acid, ribitol, propanoic acid and serine were accumulated in seedlings exposed to nutrient starvation. In PGPR inoculated rice glucose, fructose, mannose, glucitol, oleic acid, gulonic acid, raffinose, inositol were accumulated that induce metabolic and physiological parameters to reduce the impact of stress. Based on results SN13 was selected for gene expression analysis of metabolism-related genes that further affirmed the ability of PGPR to modulate carbohydrate metabolism in rice seedlings under suboptimum nutrient level.


Assuntos
Bacillus amyloliquefaciens/fisiologia , Metabolismo dos Carboidratos , Interações Hospedeiro-Patógeno , Oryza/metabolismo , Oryza/microbiologia , Estresse Fisiológico , Cromatografia Gasosa-Espectrometria de Massas , Redes e Vias Metabólicas , Metabolômica/métodos , Minerais/análise , Nutrientes , Fenômenos Fisiológicos da Nutrição , Oryza/genética , Fotossíntese , Pigmentos Biológicos/análise , Espécies Reativas de Oxigênio/metabolismo , Plântula/genética , Plântula/metabolismo , Plântula/microbiologia , Sementes
7.
Plant Physiol Biochem ; 146: 187-197, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31756605

RESUMO

An adequate supply of mineral nutrients is crucial to obtain optimum productivity in agriculture. The present investigation was carried to find the inoculation effect of plant growth-promoting rhizobacteria (PGPR), i.e., Paenibacillus lentimorbus B-30488 (B-30488), Bacillus amyloliquefaciens SN13 (SN13) and their consortium for the growth of rice var. Sarju-52, grown under suboptimal nutrient conditions. The study revealed that the individual PGPR treatments showed comparatively better performance than consortia in morphological, physiological, biochemical, and nutrient analysis. Towards understanding the complex mechanism(s), untargeted metabolite profiling was performed using GC-MS, showed alteration of metabolites in rice seedlings facing suboptimal nutrient conditions and inoculated with PGPR. Metabolites such as oleic acid, mannitol, and ethyl iso-allocol were accumulated significantly under starved conditions. Under suboptimal nutrient conditions, sugars such as ribose, glucose, fructose, trehalose, palmitic acid, and myristic acid were accumulated significantly in PGPR inoculated seedlings. The significantly altered pathways due to PGPR inoculation under suboptimal nutrient conditions mainly belongs to carbohydrate and fatty acid metabolism. Interestingly, it was observed that among all the treatments, inoculation with SN13 performed comparatively better than other treatments. Further, in SN13 inoculated samples the qRT-PCR analysis of transcription factors and metabolism-related genes were validated that indicates PGPR deploy metabolic re-programming in rice var. Sarju-52 to enhance its nutrient use efficiency, tolerance, and growth under suboptimum nutrient conditions.


Assuntos
Bacillus amyloliquefaciens , Oryza , Paenibacillus , Nutrientes
8.
Microbiol Res ; 223-225: 110-119, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31178043

RESUMO

Nutrient deficiency in soil is one of the limiting factors responsible for stunted growth and poor flowering/fruiting of crops which result in decline in overall agricultural productivity. However, one important strategy to overcome the problem of nutrient deficiency and to avoid use of chemical fertilizers is the use of plant growth promoting rhizobacteria (PGPR). Paenibacillus lentimorbus NRRL B-30488 (hereafter B-30488), an efficient PGPR has been reported to have various plant growth promoting traits that help crops to mitigate various environmental stresses. Therefore, the present work was designed to examine the application of B-30488 on chickpea growth under nutrient stress condition. Plants inoculated with B-30488 showed positive modulation in physio-biochemical behaviour and mineral nutrient uptake for better growth and development. Alteration in gene expression and metabolic profile under nutrient stress condition in chickpea also supported the stress amelioration capability of B-30488. Principal component analysis statistically proved that improved growth performance of chickpea plants under nutrient stress was mainly due to B-30488 induced modulation of metabolic pathways. To the best of our knowledge, this is the first study for analysis of growth promotion and stress alleviation in chickpea plants subjected to nutrient stress in presence of PGPR B-30488.


Assuntos
Cicer/crescimento & desenvolvimento , Cicer/metabolismo , Cicer/microbiologia , Nutrientes , Paenibacillus/fisiologia , Desenvolvimento Vegetal , Agricultura , Antioxidantes , Cicer/citologia , Produtos Agrícolas , Regulação da Expressão Gênica de Plantas , Hidroponia , Redes e Vias Metabólicas , Nutrientes/química , Estresse Oxidativo , Pigmentos Biológicos/análise , Extratos Vegetais/análise , Raízes de Plantas/citologia , Prolina/análise , Solo/química , Estresse Fisiológico , Açúcares/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA